23. 本命题没有证明--哥德尔不完备定理证明思路简介

23. 本命题没有证明--哥德尔不完备定理证明思路简介

2017-10-16    11'04''

主播: 大老李聊数学(全集)

9 0

介绍:
(文末有“每周一题”及上周答案)  大家好,我是大老李。前不久我们聊到了连续统问题,让我想到了哥德尔著名的两个不完备定理。很多人知道哥德尔的这个不完备定理,但我觉得你可能并不了解哥德尔不完备定理是如何证明的,所以我今天准备给大家简单聊聊他的证明思路。       但讲之前,我还是不得不赘述下哥德尔的这个定理,其实准确来说,哥德尔不完备定理是两条。其中的第一条是说,任何一个足够复杂的公理系统,如果它是相容的,那么这个公理系统内部就一定存在不能被证明的命题。相容的意思就是它内部不能从公理推出互相矛盾的结论。这大概就是哥德尔的两条不完备定理中,比较为人熟知的一个。这里说的足够复杂的公理系统,其实要求并不高,简单来说只要求能定义自然数和进行加法乘法就可以了,等下你也能看到如此要求的原因。     哥德尔还有一个不太著名的第二不完备定理。这个定理是说任何一个足够复杂的公理系统,它都不能证明自己是相容的,也就是它不能证明自己是不会推导出互相矛盾的命题的。你觉得这是不是很有点让人郁闷的结论。而它的一个等价形式读出来就更令人有恐惧感:就是如果一个足够复杂的,而且足够强大的公理系统能证明自己是相容的,则它一定是不相容的。这句话听上去很拗口,不过你可以慢慢体会下。本周问题:这周换个简单点的逻辑题:桌上有5枚看上去一模一样的硬币,其中一枚是假币。假币的重量与真币不同,可能重,也可能比真币轻。你口袋里另外有一枚真币。现在请你用一个两托盘天平,只称两次,你可以把假币找出来吗?[图片]上周答案:上周问题是:本周题目是一道几何题,请问如下的三角形里,可以放入的最大的矩形面积有多大?[图片]正确答案是18,恭喜“再见卡农”和“Magician”答对。本题可以先从一般的三角形开始考虑,我们可以证明,对一般的三角形,其内部最大的内接矩形,面积为三角形大小的一半。考虑如下三角形,边长a[图片]而这个最大的矩形显然是三角形面积一半。已知三角形边长,可以用海伦公式求解面积,得原三角形面积为36,所以内部最大矩形面积为18。欢迎订阅公众号“大老李聊数学”,本期节目讲稿将于公众号中推送:[图片]