(文末有每周一题和上周答案)今天跟大家聊一个近期的数学新闻。这个新闻是关于这样一个问题:什么样形状的地砖可以铺满地板不留缝隙?你可能马上能想到正三角形,正方形和正六边形都可以。那如果不是正多边形的呢?这个问题一下子有意思起来,这就牵涉到数学中所谓的密铺问题。密是密密麻麻的的密,铺是铺地板的铺。任意三角形密铺:[图片]任意四边形密铺:[图片]六边形密铺:[图片]15种五边形密铺(含4中特例):[图片]非周期性密铺--彭罗斯镶嵌:[图片]每周一题 本周题目:能变成一样颜色吗?本期题目取自俄罗斯某数学竞赛题。某岛屿上有一群变色龙。现在有13只绿色的,15只蓝色的和17只红色变色龙。每当两只不同颜色的变色龙靠近时,它们都会变成第三种颜色。那么它们有可能变成同一种颜色吗?[图片]上期答案:上周题目是:如下图,有一个半径为2的小圆,沿半径为10的大圆逆时针运动,移动半个圆周后,沿一个半径为5的圆继续运动半个圆周。运动过程中,橙色圆圆心始终保持在其他圆上。为橙色圆扫过的面积多大,即图右阴影部分(包含橙色圆本身)?提示:无需高等数学,耐心将图形分解,分部计算。[图片]这期题目比较简单,答案是64pi。答对的朋友有(如有遗漏请见谅):黄亮,今年不买表,李凯峰_3g,Matody 。解法看这个图就明白了:[图片]另外还有两位朋友(567和吃喵个鱼)提出这种解法:大圆半周长+小圆半周长,然后乘以小球半径,然后再加上小球的面积。你看,微积分思想就是这样孕育出来的。下周再见!收听“大老李聊数学”音频 关注“大老李聊数学”[图片] [图片]