E161|聊聊大模型如何思考与深度学习科学家Yann LeCun

E161|聊聊大模型如何思考与深度学习科学家Yann LeCun

2024-07-29    61'29''

主播: 硅谷101|中国版

657 6

介绍:
【主播】 泓君Jane,硅谷101创始人,播客主理人 【嘉宾】 陈羽北,加州大学戴维斯分校电子与计算机工程系助理教授。 【你将听到】 【大模型 vs 人脑】 02:09 白盒研究的目标:把AI从工程推向科学 02:53 从早期模型到大语言模型,如何识别词汇的元意思 06:51 OpenAI的研究:用gpt4理解gpt2模型 08:46 白盒研究的本质是理解信号的结构,从而提升模型效率 11:37 人脑如何通过少量数据获得泛化的能力 12:46 比起人脑,大语言模型观测手段多,但它对世界的理解不够 20:11 稀疏编码:源自大脑神经元的运作机制 【白盒研究】 22:01 黑盒模型发展很快:只求工作,不求简洁 24:56 白盒模型的问题:过度简洁 27:19 Yann Lecun:支持白盒研究但不确定走得通 28:25 基础AI研究靠好奇心驱动,而非商业化 30:16 白盒模型的三个流派:可视化、神经科学、数学统计 32:30 对黑盒模型的优化:提升效率、统一不同模型 33:44 距离白盒gpt还很远,发展是阶段性的 35:29 打开ImageNet是白盒的第一步 【关于Yann LeCun】 38:21 Yann经历了神经网络领域历史上的高峰低谷 39:45 加入Yann LeCun组是偶然 42:51 Yann对大方向的坚持和直觉 43:02 “不反对Scaling Law,但只堆数据是不够的” 49:10 科学家马毅 Yann,观点并不冲突:高层次的规律是简洁的 51:58 从至暗时刻走出的AI科学家们:专注、纯粹 53:55 Yann希望学生可以做与时间共存的工作 55:57 “读phd不应该研究llm” 57:24 Yann在Meta的贡献:筹建Meta AI、开源路线 60:29 大模型未来的发展:Scaling Law依然重要,但提升效率也很重要 【相关阅读】 Anthropic的研究:从神经网络Claude 3 Sonnet提取可解释的特征 OpenAI的研究:让GPT4去解释GPT2的神经元 马毅团队的白盒模型 【相关人物介绍】 Yann LeCun:计算机科学家,在机器学习、计算机视觉、移动机器人和计算神经科学等领域都有很多贡献,被誉为“卷积神经网络之父”,现任Meta首席AI科学家,并担任纽约大学教授。他在1980年代率先提出了卷积神经网络(CNN),这项技术成为现代计算机视觉的基础。LeCun与Geoffrey Hinton和Yoshua Bengio共同获得2018年图灵奖,表彰他们在深度学习方面的开创性工作。 【监制】 Holiday 【后期】 AMEI 【BGM】 Alteration - Karoliina Gabel Listen to the Forest Weep - Hanna Lindgren 【在这里找到我们】 公众号:硅谷101 收听渠道:苹果|小宇宙|喜马拉雅|蜻蜓FM|网易云音乐|QQ音乐|荔枝播客 海外用户:Apple Podcast|Spotify|TuneIn|Youtube|Amazon Music 联系我们:podcast@sv101.net